
Lustre Performance From the
User Perspective

HDF5 Workshop

Katie Antypas
 January 20, 2009

User I/O Wish List

• Single shared file for parallel I/O
• Higher level portable file format
• Consistent I/O performance over a broad

range of patterns (within reason)
• Shared file performance matches (or is

close to) one file-per-proc performance
• No worries about file striping

Franklin Configuration

O
ST

O
ST

O
ST

O
ST O
ST

O
ST

O
ST

O
ST

O
ST

O
ST

O
ST

O
ST O
ST

O
ST

O
ST

O
ST O
S

T O
ST

O
ST

O
ST O
ST

O
ST

O
ST

O
ST

O
ST

O
ST

O
ST

O
ST O
ST

O
ST

O
ST

O
STO
ST O
ST

O
ST O
ST

O
ST

O
ST

O
ST

O
STO
ST20 OSS

80 OST

Franklin Compute and Interactive Nodes

“The Torus”

5 DDN
80 LUN

FC Network

…

Connectivity and configuration set in a “good” way for
parallelism. Using 20 OSTs will spread evenly over the 5 DDN
appliances.

…

File Striping on Lustre

• Lustre file system on Franklin made up of an
underlying set of parallel I/O servers
– OSSs (Object Storage Servers) - nodes dedicated to

I/O connected to high speed torus interconect
– OSTs (Object Storage Targets) software abstraction

of physical disk (1 OST maps to 1 LUN)
• File is said to be striped when read and write

operations access multiple OSTs concurrently
• Striping can increase I/O performance since

writing or reading from multiple OSTs
simultaneously increases the available I/O
bandwidth

Default Stripe Count of 4 on /scratch

• Advantages
– Get 4 times the bandwidth you could from using 1 OST
– Max bandwidth to 1 OST ~ 350 MB/Sec
– Using 4 OSTs ~1,400 MB/Sec
– In practice using all OSTs 11-12 GB/Sec

I/O
Servers

OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 6 OSS 19

OSTs 0,20,40,60 1,21,41,61 2,22,42,62 3,23,43,63 4,24,44,64 5,25,45,65 19,39,59,79

Default Striping on /scratch

• 2 other parameters which characterize striping pattern
of a file
– Stripe size

• Number of bytes to write on each OST before cycling to next OST
• Default is 1MB

– OST offset
• Indicates starting OST
• Default is round robin across all requests on system

I/O
Servers

OSTs

OSS 0 OSS 1 OSS 2 OSS 3 OSS 4 OSS 5 OSS 19

0,20,40,60 1,21,41,61 2,22,42,62 3,23,43,63 4,24,44,64 5,25,45,65 19,39,59,79

Good I/O Performance with
Simple I/O Patterns

• File system capable
of high performance
for shared files

• Large block
sequential I/O

• Transfer size
multiple of stripe
size

• No metadata

Decreased I/O Performance
without Simple I/O Pattern

• Deviations from
simple I/O patterns
result in
performance loss
– Smaller amounts of

data, (MBs/proc)
– Transfer size not

multiple of stripe
width

– Start offset doesn’t
match stripe width

– Strided data

I/O Performance Sensitivity to
Transfer Size

Transfer Size

2GB File Size, 80 Processors, 40 OSTs

G
B

/S
ec

Good performance if
transaction is even multiple

of stripe size

Sensitivity to Transfer Size with
OST alignment

Even better if you make #stripes
equal to #compute processes

Performance islands more
pronounced. Typical (Non-

OST-sized) cases worse.

G
B

/S
ec

Transfer Size

2GB File Size, 80 Processors 80 OSTs (Shane Case)

I/O Performance Sensitivity to
Transfer Size

Transfer Size

2GB File Size, 80 Processors 40 OSTs: Offset file start by 64k

G
B

/S
ec

Performance falls dramatically
if you offset start of file by

small increment (64k)

User Perspective: Impractical to aim
for such small “performance islands”

• Reasonable to help users adjust strategies at
C/Fortran MPI, MPI-IO, HDF5 layer, but can’t require
users to understand low level file system details

• Transfer size for interleaved I/O must always match
OST stripe width
– Difficult to constrain domain-decomposition to granularity of I/O
– Not practical for codes which don’t have identical domain sizes

• Every compute node must write exactly aligned to
OST boundary
– Not feasible if users write metadata or headers to files
– Difficult for high-level self-describing file formats (HDF5, pnetcdf)
– Not practical when domain-sizes are slightly non-uniform

Importance of MPI-IO
Optimization for 2 Phase I/O

• We know:
– Matching number of application I/O writers with number of

OSTs gives best performance
– Writing fewer, larger blocks of data gives better

performance than many small writes
– Writes aligning to OST boundaries get file per proc

performance (impractical for apps)
• MPI-IO’s 2 Phase I/O precisely addresses above

concerns
– Subset of nodes, called aggregators, do actual writing
– Aggregators collect smaller chunks of data into larger

blocks
– More aggressive version addresses OST alignment

Priorities

• Improve MPI-IO implementation on
Lustre
– Investigate poor collective I/O performance
– Support efforts of David Knaak to

implement efficient 2 phase I/O including
• Aligning data to block boundaries
• Optimizations to match processors to OSTs

• HDF5 to take advantage of Lustre
architecture and optimizations

